Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genom Data ; 25(1): 14, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321382

RESUMEN

OBJECTIVE: Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important grain produced in the world. Interest for cultivating sorghum is increasing all over the world in the context of climate change, due to its low input and water requirements. Like other cultivated cereals, sorghum has significant nutritional value thanks to its protein, carbohydrate and dietary fiber content, these latter mainly consisting of cell wall polysaccharides. This work describes for the first time a transcriptomic analysis dedicated to identify the genes involved in the biosynthesis and remodelling of cell walls both in the endosperm and outer layers of sorghum grain during its development. Further analysis of these transcriptomic data will improve our understanding of cell wall assembly, which is a key component of grain quality. DATA DESCRIPTION: This research delineates the steps of our analysis, starting with the cultivation conditions and the grain harvest at different stages of development, followed by the laser microdissection applied to separate the endosperm from the outer layers. It also describes the procedures implemented to generate RNA libraries and to obtain a normalized and filtered table of transcript counts, and finally determine the number of putative cell wall-related genes already listed in literature.


Asunto(s)
Grano Comestible , Sorghum , Grano Comestible/genética , Grano Comestible/metabolismo , Sorghum/genética , Sorghum/metabolismo , Endospermo/metabolismo , Perfilación de la Expresión Génica , Pared Celular/metabolismo
2.
Cells ; 10(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34831029

RESUMEN

Background: Although several approaches have revealed much about individual factors that regulate pancreatic development, we have yet to fully understand their complicated interplay during pancreas morphogenesis. Gfi1 is transcription factor specifically expressed in pancreatic acinar cells, whose role in pancreas cells fate identity and specification is still elusive. Methods: In order to gain further insight into the function of this factor in the pancreas, we generated animals deficient for Gfi1 specifically in the pancreas. Gfi1 conditional knockout animals were phenotypically characterized by immunohistochemistry, RT-qPCR, and RNA scope. To assess the role of Gfi1 in the pathogenesis of diabetes, we challenged Gfi1-deficient mice with two models of induced hyperglycemia: long-term high-fat/high-sugar feeding and streptozotocin injections. Results: Interestingly, mutant mice did not show any obvious deleterious phenotype. However, in depth analyses demonstrated a significant decrease in pancreatic amylase expression, leading to a diminution in intestinal carbohydrates processing and thus glucose absorption. In fact, Gfi1-deficient mice were found resistant to diet-induced hyperglycemia, appearing normoglycemic even after long-term high-fat/high-sugar diet. Another feature observed in mutant acinar cells was the misexpression of ghrelin, a hormone previously suggested to exhibit anti-apoptotic effects on ß-cells in vitro. Impressively, Gfi1 mutant mice were found to be resistant to the cytotoxic and diabetogenic effects of high-dose streptozotocin administrations, displaying a negligible loss of ß-cells and an imperturbable normoglycemia. Conclusions: Together, these results demonstrate that Gfi1 could turn to be extremely valuable for the development of new therapies and could thus open new research avenues in the context of diabetes research.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/prevención & control , Factores de Transcripción/deficiencia , Células Acinares/citología , Células Acinares/metabolismo , Amilasas/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ghrelina/metabolismo , Proteínas de Homeodominio/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/genética , Integrasas/metabolismo , Ratones Transgénicos , Mutación/genética , Páncreas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
BMC Mol Cell Biol ; 21(1): 92, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33302866

RESUMEN

BACKGROUND: In rice, the cortex and outer tissues play a key role in submergence tolerance. The cortex differentiates into aerenchyma, which are air-containing cavities that allow the flow of oxygen from shoots to roots, whereas exodermis suberification and sclerenchyma lignification limit oxygen loss from the mature parts of roots by forming a barrier to root oxygen loss (ROL). The genes and their networks involved in the cellular identity and differentiation of these tissues remain poorly understood. Identification and characterization of key regulators of aerenchyma and ROL barrier formation require determination of the specific expression profiles of these tissues. RESULTS: We optimized an approach combining laser microdissection (LM) and droplet digital RT-PCR (ddRT-PCR) for high-throughput identification of tissue-specific expression profiles. The developed protocol enables rapid (within 3 days) extraction of high-quality RNA from root tissues with a low contamination rate. We also demonstrated the possibility of extracting RNAs from paraffin blocks stored at 4 °C without any loss of quality. We included a detailed troubleshooting guide that should allow future users to adapt the proposed protocol to other tissues and/or species. We demonstrated that our protocol, which combines LM with ddRT-PCR, can be used as a complementary tool to in situ hybridization for tissue-specific characterization of gene expression even with a low RNA concentration input. We illustrated the efficiency of the proposed approach by validating three of four potential tissue-specific candidate genes detailed in the RiceXpro database. CONCLUSION: The detailed protocol and the critical steps required to optimize its use for other species will democratize tissue-specific transcriptome approaches combining LM with ddRT-PCR for analyses of plants.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ensayos Analíticos de Alto Rendimiento , Captura por Microdisección con Láser , Oryza/genética , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Especificidad de Órganos/genética , Adhesión en Parafina , ARN de Planta/genética , ARN de Planta/metabolismo , Reproducibilidad de los Resultados
4.
J Exp Bot ; 71(22): 7046-7058, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32842152

RESUMEN

In Arabidopsis, chromosomal double-strand breaks at meiosis are presumably catalyzed by two distinct SPO11 transesterases, AtSPO11-1 and AtSPO11-2, together with M-TOPVIB. To clarify the roles of the SPO11 paralogs in rice, we used CRISPR/Cas9 mutagenesis to produce null biallelic mutants in OsSPO11-1, OsSPO11-2, and OsSPO11-4. Similar to Osspo11-1, biallelic mutations in the first exon of OsSPO11-2 led to complete panicle sterility. Conversely, all Osspo11-4 biallelic mutants were fertile. To generate segregating Osspo11-2 mutant lines, we developed a strategy based on dual intron targeting. Similar to Osspo11-1, the pollen mother cells of Osspo11-2 progeny plants showed an absence of bivalent formation at metaphase I, aberrant segregation of homologous chromosomes, and formation of non-viable tetrads. In contrast, the chromosome behavior in Osspo11-4 male meiocytes was indistinguishable from that in the wild type. While similar numbers of OsDMC1 foci were revealed by immunostaining in wild-type and Osspo11-4 prophase pollen mother cells (114 and 101, respectively), a surprisingly high number (85) of foci was observed in the sterile Osspo11-2 mutant, indicative of a divergent function between OsSPO11-1 and OsSPO11-2. This study demonstrates that whereas OsSPO11-1 and OsSPO11-2 are the likely orthologs of AtSPO11-1 and AtSPO11-2, OsSPO11-4 has no major role in wild-type rice meiosis.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/genética , Sistemas CRISPR-Cas , Meiosis , Mutagénesis , Oryza/genética
5.
PLoS One ; 13(8): e0201536, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30092080

RESUMEN

In the context of type 1 diabetes research and the development of insulin-producing ß-cell replacement strategies, whether pancreatic ductal cells retain their developmental capability to adopt an endocrine cell identity remains debated, most likely due to the diversity of models employed to induce pancreatic regeneration. In this work, rather than injuring the pancreas, we developed a mouse model allowing the inducible misexpression of the proendocrine gene Neurog3 in ductal cells in vivo. These animals developed a progressive islet hypertrophy attributed to a proportional increase in all endocrine cell populations. Lineage tracing experiments indicated a continuous neo-generation of endocrine cells exhibiting a ductal ontogeny. Interestingly, the resulting supplementary ß-like cells were found to be functional. Based on these findings, we suggest that ductal cells could represent a renewable source of new ß-like cells and that strategies aiming at controlling the expression of Neurog3, or of its molecular targets/co-factors, may pave new avenues for the improved treatments of diabetes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Plasticidad de la Célula/fisiología , Diabetes Mellitus Tipo 1/patología , Células Endocrinas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Conductos Pancreáticos/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diabetes Mellitus Tipo 1/genética , Modelos Animales de Enfermedad , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Conductos Pancreáticos/citología , Regeneración
6.
J Cell Biol ; 216(12): 4299-4311, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29025873

RESUMEN

The recent demonstration that pancreatic α cells can be continuously regenerated and converted into ß-like cells upon ectopic expression of Pax4 opened new avenues of research in the endocrine cell differentiation and diabetes fields. To determine whether such plasticity was also shared by δ cells, we generated and characterized transgenic animals that express Pax4 specifically in somatostatin-expressing cells. We demonstrate that the ectopic expression of Pax4 in δ cells is sufficient to induce their conversion into functional ß-like cells. Importantly, this conversion induces compensatory mechanisms involving the reactivation of endocrine developmental processes that result in dramatic ß-like cell hyperplasia. Importantly, these ß-like cells are functional and can partly reverse the consequences of chemically induced diabetes.


Asunto(s)
Diabetes Mellitus Experimental/genética , Expresión Génica Ectópica , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Paired Box/genética , Células Secretoras de Somatostatina/metabolismo , Animales , Proliferación Celular , Transdiferenciación Celular/genética , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Terapia Genética/métodos , Glucagón/biosíntesis , Glucagón/genética , Proteínas de Homeodominio/metabolismo , Insulina/biosíntesis , Insulina/genética , Células Secretoras de Insulina/citología , Masculino , Ratones , Ratones Transgénicos , Factores de Transcripción Paired Box/metabolismo , Somatostatina/biosíntesis , Somatostatina/genética , Células Secretoras de Somatostatina/citología , Estreptozocina
8.
Commun Integr Biol ; 10(3): e1300215, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28702122

RESUMEN

Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis offering an attractive and innovative approach for diabetes therapeutics.

9.
Front Genet ; 8: 75, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28634486

RESUMEN

Type 1 diabetes is an auto-immune disease resulting in the loss of pancreatic ß-cells and, consequently, in chronic hyperglycemia. Insulin supplementation allows diabetic patients to control their glycaemia quite efficiently, but treated patients still display an overall shortened life expectancy and an altered quality of life as compared to their healthy counterparts. In this context and due to the ever increasing number of diabetics, establishing alternative therapies has become a crucial research goal. Most current efforts therefore aim at generating fully functional insulin-secreting ß-like cells using multiple approaches. In this review, we screened the literature published since 2011 and inventoried the selected markers used to characterize insulin-secreting cells generated by in vitro differentiation of stem/precursor cells or by means of in vivo transdifferentiation. By listing these features, we noted important discrepancies when comparing the different approaches for the initial characterization of insulin-producing cells as true ß-cells. Considering the recent advances achieved in this field of research, the necessity to establish strict guidelines has become a subject of crucial importance, especially should one contemplate the next step, which is the transplantation of in vitro or ex vivo generated insulin-secreting cells in type 1 diabetic patients.

10.
Cell ; 168(1-2): 73-85.e11, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27916274

RESUMEN

The recent discovery that genetically modified α cells can regenerate and convert into ß-like cells in vivo holds great promise for diabetes research. However, to eventually translate these findings to human, it is crucial to discover compounds with similar activities. Herein, we report the identification of GABA as an inducer of α-to-ß-like cell conversion in vivo. This conversion induces α cell replacement mechanisms through the mobilization of duct-lining precursor cells that adopt an α cell identity prior to being converted into ß-like cells, solely upon sustained GABA exposure. Importantly, these neo-generated ß-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in ß-like cell counts, suggestive of α-to-ß-like cell conversion processes also in humans. This newly discovered GABA-induced α cell-mediated ß-like cell neogenesis could therefore represent an unprecedented hope toward improved therapies for diabetes.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , Ácido gamma-Aminobutírico/administración & dosificación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/efectos de los fármacos , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Células Secretoras de Glucagón/efectos de los fármacos , Humanos , Islotes Pancreáticos/citología , Masculino , Ratones , Proteínas del Tejido Nervioso , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...